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ELEMENTS AND PARAMETERS OF THE OSCULATING ORBIT 

AND THEIR DERIVATIVES-- 

By Wilbur F. Dob son, Vearl N. Huff, 
and Arthur V . Zimmerman 

SUMMARY 

The analysis determines the time derivatives of the conic-section 
orbital elements in a disturbed orbit by perturbation methods.  Integra- 
tion of any of the several resulting systems of six first-order linear 
differential equations by numerical methods can be a useful tool for the 
solution of problems in orbital mechanics. 

Equations for the two-body orbit are also summarized in a convenient 
manner. 

INTRODUCTION 

The recent emphasis on space-flight trajectory calculations and the 
use of electronic computing machinery have combined to Increase the in- 
terest in the perturbation methods for studying problems in celestial 
mechanics.  This is especially true of the methods that leave the dis- 
turbing function undeveloped and require numerical integration to com- 
plete' the solution. Previously, the amount of numerical work required 
rendered precision calculations by these latter methods impractical.  It 
is the purpose of this report to examine and extend some of the previous 
work in perturbation theory to secure forms that may be better adapted to 
numerical integration, at least for specific problems. 

The basic work in developing expressions for the derivatives of the 
orbital elements must be credited to various notable contributors in 
dynamical astronomy. Perturbation theory was begun by Euler in 1748. 
However, the first complete development was presented by Lagrange in 
1782. 

The perturbation method summarized herein is formulated in terms of 
Lagrangian brackets. Numerous methods for evaluating the brackets have 
been published. The indirect method of evaluating the brackets used 



herein Is attributed to Whittaker, as reported by Smart (ref. l).  The 
characteristic of the indirect methods is that ttn work begins with the 
derivation of a general expression for a Lagrangian bracket, from which 
all brackets are easily evaluated. 

For convenience, the present report gives alternative forms of the 
perturbation derivatives; and, by using the results presented in the 
tables, many others are obtainable.  The extension to the case of circu- 
lar orbits has been included.  A collection of useful two-body equations 
is also given in table I without derivation. 

The procedure indicated for the reduction of the three second-order 
linear differential equations of motion in rectangular coordinates to 
six first-order linear differential equations in orbital elements follows 
the pattern, but is revised from that given in Moulton (ref. 2).  The 
analysis has been further generalized by avoiding the requirement that 
the perturbation function be a potential function. This extension shows 
that the results are valid for thrust and drag, which are not potential- 
type functions. Another revision concerns the determination of the dis- 
turbing functions in terms of the elements that define the size, shape, 
and position in the orbit. This procedure ^iven herein is believed to 
be more direct than that given elsewhere (refs. 1 and 2). 

i 
H 
o 
ro 

ANALYSIS 

Equations of Motion 

Consider the motion of an object subject to an inverse-square cen- 
tral gravitational acceleration directed toward the origin, and also sub- 
ject to smaller disturbing accelerations that can be expressed as func- 
tions of the variables and constants of the problem.  Let OX, OY, OZ in 
figure 1 be the coordinate axes in a noninertlal Cartesian system having 
its origin located at the center of the mass M0. The equations of mo- 

tion of the object are then as follows from application of Newton's 
second law to the problem (e.g., refs. 1 and 2): 

dt2 
+ H2i 

x 

^H-^= A 
dt^ y (1) 

d2z 

dt .2 
ÜL = A. 



In the notation adopted hereinafter, equation (l) will he indicated as 

x -» y^z (1) 
dt2       r3 "    x^ 

00 
o 

I 

where    x -> y_,z    indicates that  separate  equations in    x,  j,   and    z    are 
included to  complete the  set.     All   symbols are defined in appendix A. 

The  acceleration term    nx/r0     is due to central  gravitational attraction, 
where 

1^ 

M. = k2(M0 + m) (2) 

is  the  gravitational constant, M0    is the mass  of the body at  the 

origin,   and    m    is  the  object's mass).     The  components of the disturbing 
acceleration  that  disturb the  two-body orbit are    Ax,  x -^ y,z    in equa- 
tions   (l)   and may be written as 

"x fx -  k' 

n z 
i=l 

X   -  Xi        x±\ 
x -» y,z (3) 

where    Mi    is  the mass of the    ith    disturbing body,  n    is the number  of 

gravitating bodies  excluding the central body, Z^     is defined by 

A| =   (x - x^2 +   (y  - y^2  +  (z   -  Ziy (4) 

and fx is the component of the disturbing acceleration along OX due 

to all other forces.  For example, these may include propulsion thrust, 
aerodynamic forces, and forces due to the oblateness of M0.  No restric- 

tion need be placed on the form of disturbing acceleration except that 
it be sufficiently well defined to permit Integration. 

Equations (l) may be integrated directly by numerical methods. How- 
ever, in many cases larger intervals may be used in numerical integra- 
tion, or approximate closed-form solutions can be obtained if the equa- 
tions are expressed in terms of perturbations of orbital elements. 

The perturbation theory uses as a reference an orbit having no per- 
turbations.  If the disturbing acceleration is assumed to be zero, the 
differential equations become 

^2 
1 x + px = 0 
dt2  r3 

x -> y,z (5) 



The solution of equations (5) is readily obtained and is found to be a 
conic section. The motion of the object can be represented by six or- 
bital elements obtained from the constants of integration of equations 
(5).  Table I gives a collection of two-body equations relating selected 
orbital elements and parameters.  Although it is not possible to express 
the Cartesian positions and velocities explicitly in terms of the orbital 
elements, the solutions of equations (5) may be indicated as 

x = x(c1, c2, C3, c4, c5, c6, t),    x -♦ y,z (6a) 

x = x(c1, c2, c3; c4, c5, eg, t),    x -♦ jr,z        (6b) 

where c^,   c       •   •   '> c are orbital elements. 

If A^^ 0,  x -> y^z  in equations (l), the path is not a simpl e 

h \  Ox 
ack 

k=l 

dx bx   ,     . 
dt = 5t+7 .^Tdt-'   x->y'z ^7a) 

w 
1 
H 
DO 
O 
ro 

conic.  However, at any instant it may be regarded as a conic with vari- 
able orbital elements. In fact, equations (6) are the solutions of equa- 
tions (l) if the orbital elements  c,, c . • • •, cK are regarded as 

variables. 

This introduces the concept of the osculating orbit. Let an object 
be moving in a perturbed path about a central body. An instantaneous 
two-body orbit always exists tangent to the actual path at the point and 
having a velocity in the orbit equal to that of the actual body.  Such 
tangent orbits are called the oscillating orbits.  The relations implicit 
in this definition are used to derive the equations for the disturbed 
orbit in terms of orbital elements. The three second-order differential 
equations of equations (l) are transformed to six first-order simultaneous 
differential equations involving orbital elements.  Lagrangian brackets 
are utilized to solve the set of simultaneous differential equations for 
derivatives of the various orbital elements explicitly. The explicit 
derivatives are the objective of this report. 

As the first step in obtaining these derivatives, equations (6) are 
differentiated regarding C-^Cg, • • •, Cg as variables. The following 

equations that apply to the actual path are obtained: 

d2x _ ox . \  öx dck     „_,,.* f^\ 
—5"  ^T + /  S— TZ~> x -» y,z (7b) 
dt2  ^  / ^ ^ 

k=l 



Equations  (l) may be introduced to eliminate  (d2x/dt2), x -* y,z    from 
equations  (Vb).    Then equations   (?)  maybe written as 

o 
00 

I 

ox       dx + \      öx    ^fk _ 0 
§t  " dt     /j^ at ' 

x ■* y,z 

öx  .  yx     \     ^x    dck 
§t      r3 +^     T.k dt 

k=l 

= Ax, x -* y,z 

(8a) 

(8b) 

In the osculating orbit    dck/dt = 0    and    A^ = 0^   so that  equations 
(8)  become 

öx      dx      „ 
5t " dt = 0^ 

öx      yx 
5t       r3 0, 

x -• y,z 

y^z 

(9a) 

Oh) 

Introducing the requirement that velocities in the actual path and 
in the osculating orbit are equal., equations (9a) may be substituted into 
equations (8a); and similarly, because the acceleration in the osculating 
orbit differs from that of the true orbit only by the disturbing acceler- 
ation, equations (9b) may be substituted into equation (8b) to give 

Ax= 0, 

x -* y,z (10a) 

y^z (10b) 

Equations (10) are the resulting six first-order differential equations. 
They are not adapted for computation because equations (6) are not explic- 
itly available and because the derivatives of the orbital elements appear 
simultaneously rather than explicitly. This difficulty is conveniently 
removed by further manipulation.  The following equations are written in 



a form convenient for formulation in terms of Lagrangian brackets; 

ilUP'l / Wl 

J\ M- 
^ 

ac    k 
^k V.a cj 

lVk.6^ 
U^=l 

iL 
o 

^7 ck - Az   ^ 
■   1 ^z 

3c,      k I he . = 0       (lla) 

j=l,2,•••,£> 

The validity of equations (lla) is obvious because each term contains a 
zero factor from equations (10).  Results of the operations shown may be 
written as 

2 [cPck]6k= Dc^    J = 1'z''   '   ''& (lib) 

k=l 

where 

[c^oj hx    öx   öx öx  , öy hy        öv ö 
i'   k- OCM   ÖCV   öc J 

ox + Ö2_ SZ ö^_ ö^_ + öz öz _ dz 5z 
ScT  ÖC4 öcv öCi  dcv  öc. äcv ' cicT ÖCi, j u.k   u.j u^        ucj uck   ocj ock   OCj OCk   OCj ock 

(12) 

and 

*-   ■**h£- + *y%r + * c 1 
J j j 

z S"c. j = 1,2,- • -,6 (13) 

The brackets   [c-,ck]   are the Lagrangian brackets. 
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General Formula for a Lagrangian Bracket 

Previously, a general set of orbital elements has been used. Before 
proceeding to evaluate the Lagrangian "brackets of equations (llb); it is 
convenient to choose a specific set of independent orbital elements so as 
not to complicate the analysis. The set chosen is not significant; for, 
as will be shown in the RESULTS section, it is relatively simple to sub- 
stitute any elements that may be desired.  If there are chosen as the set 

(xi       of orbital elements the semimajor axis a, eccentricity e, time of peri- 
£j       center passage t , argument of pericenter 01, orbit inclination I, and 

longitude of the ascending node Ü,  the expression for the Lagrangian 
bracket is 

r« nl - ^"tpj"2^  (cü,ViH(l - e2) )  (sW^iad - e2)cos l) 
LS^J -   (s,q)   +      (s,q)     +        (s,q) 

(14) 

where     s    and    q    are  any of the  orbital elements.    The right-hand side 
is expressed in Jacobian notation.    Kote that  [s,s]  =  0    and 
[s,q]   =  -[q,s]   from equation  (12) .     The derivation of equation  (14)   is 
given in appendix B.     It results  from geometric relations  existing among 
the instantaneous values  of the orbital elements of any orbit.     It will 
be used to evaluate the Lagrangian brackets  of equations  (,11b) . 

Evaluation of Lagrangian Brackets 

A Lagrangian bracket appears in equations (lib) for each of the 36 
combinations of the six chosen orbital elements. Evaluation from equa- 
tion  (14)   shows  six of the  twelve nonzero brackets to be 

P -^   -ST-      2a2 

[a,a] 

(15a) 

^»l - " 5i -Vlia ' '8) - - lV£ -/rr^ (15b) 

.   . SB d^ad  -j^cos I =       1 oos  j JE jrrZ        (15c) 
da 

Öüü ^-/;.ia(l -  e2) _    Q. 

Vi^ 
(I5d) 



,,&]  =  _ |5. ^-/M-ad  - e2)cos I =    e-VJIa 
SiT cos I 

FT ol -      ^2. SVtia(l - e2)cos I /—r 77 U,aj -     Sß  ST = Vna(l - e2)sin I 

(I5e) 

(I5f) 

By observing the property of the brackets that [s,q] = -[q,s], the value= 
of the remaining six nonzero brackets are apparent from equations (15). 
Omitting all zero brackets, equations (lib) become 

[a,t ]t + [a,co]cD + [a,ß]ß 

[e,a)]ü) + [e,ß]ß = De 

[i,a]a = Dj 

-[a,tp]ä = 14. 

-[a,cü]ä - [e,cu]e = D^ 

-[a,ß]a - Ee,ö]e - [l^]i = Dß 

Derivatives of Elements in Terms of Disturbing 

Functions of Elements 

Introducing the values obtained for the brackets in equations (15) 
into equations (16) and solving the system for the derivatives give the 
following form for the Lagrangian equations: 

(16a) 

(16b) 

(16c) 

(I6d) 

(I6e) 

(I6f) 

2a _ 
a = DJ. 

|i  ^p 

-^ lia   CD 

(17a) 

(17b) 

o 



I = 
'ij.a I ■- e2) V 

D... COt I ; = 
CD       sm I 

to = a(l - e)   Ve+ — Va 

(17c) 

(I7d) 

o 
CM 
H 

i 
W 

V CD = - ■*/ ■  Dc e w [la 

ß = 

cot I 

-\/|-ia(l - e2) 

sin I-/M.a(l - e^) 

(I7e) 

(I7f) 

Disturbing Functions of Elements in Terms of 

Components of Disturbing Acceleration 

Prior to the integration of equations (17) it is desirable to express 
the disturbing functions 

form. 

^ ^ D V v % and DT  in more convenient 

If s  is any of the elements a.,   e,   t„, <x^ G 

tions (13) may be written as 

or I,, any of equa- 

(13a) 

It is necessary only to evaluate hx/hs,  x -* y 
order to obtain useful forms of equations (17) 
(either formally or numerically).  However, the 
a more convenient form if the Cartesian disturb 
A , A^, Az are resolved into a new orthogonal 

(l) a component normal to the orbital plane W, 

positive; (2) a component normal to the radius 
C., positive when making an angle of less than 
of motion; (3) a component along the radius R, 
outward from the origin. 

z for each element in 
that may be integrated 
equations will reduce to 

ing acceleration components 
set (fig. 2) as follows: 

positive when A7  is 

and in the orbital plane 
n/Z    with the direction 
positive when pointing 

D„, D+ 

(18). 

The analysis in appendix C determines the disturbing functions Da, 

Y)   ,  BQ,   and Dj  in terms W, C, and R as shown in equations 
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^[r^ cos v       2 Ya3(/- e2)   (t   ~ H^  si vh 

(t  - t   )(l + e  cos v)   C 

De =   (-a cos v)R + a/2+e  cos T\( ^ 
c \1 + e  cos v/ 

=  - ITTT   ^   g\   I (e sin V)R + (1 + e cos v)C| 

Dm=Cr 

DT = Wr  sin u 

D^ = Cr  cos I  - Wr  cos u sin I 

where    v    is the true anomaly and    u = v + CD. 

RESULTS 

Introduction of equations   (18)   into equations   (17)  yields 

. 2a 
V£    e(sin v)R + £ C 

1  - e2 

n ^p 4- ifc _ H1  -  e2 
» =  **• ■( (.sin v)R + 

HI P 

P       hi {(■ - J cos Y  - 3e   -^ (t  - tp)sin VIR 

f (p + r)   - - V^ (t  -  t. 

m = ./p I    cos v „   .   sin v  /,    ,   r\^     /r     , \  1 

- r  sm u 
U  = —rrr  W 

(18a) 

(18b) 

(18c) 

(I8d) 

(I8e) 

(I8f) 

(19a) 

(I9h) 

-yVp  sin I 

(19c) 

(I9d) 

(I9e) 
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T  r cos u TT i = —^==— w 
Vnp (I9f) 

Yher  P is the semilatus rectum. These results, together with other 
lorms derived from them, are given in table II. 

O 
CM 

H 

Alternate Components of Disturbing Acceleration 

Components of the disturbing acceleration in the orbital plane mav 
be alternately taken tangent to the path T and normal to the path N; 
iV?SltlVe in the direction of motion, and N is positive when di- 

rected toward the interior of the orbit. Substitution in terms of T 
and W for C and R by introducing expressions from table III gives 
tne following changes in the derivatives of equations (19): 

a = 2a^ - T 

-{ 2(e + cos v)T 
-7^ 

^^fctf^ 

-\ 

r(l - e2)s 

T + —■ (2e + cos v + e2 cos v)N pe ' 

(20a) 

(20b) 

sin u cot I W W 

(20c) 

+ e cos v + l)sin v 

3(t - 0(1 + e2 + 2e cos v) T + f| yE cos V)NI :20d) 

where V is the velocity. 

Elimination of (t - t ) 

The quantity (t - tp) may be eliminated from equation (20d) by in- 

troducing table I equations (1-96) and (1-97) for the cases e < 1 and 
e > 1, respectively.  The results for the two cases are 

tP = 1 - e 
TH — + öe + € 
2 1 e sin v 

5(l + 2e cos v + e 
■v^~r^2 

'2(e + cos v) 1 
1 + e cos v 

-E}T+ fecosv)^ 0 < e < 1 (21) 
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where E  is the eccentric anomaly, and 

'I>       V   luU   . e2 e  cos v ] sm v 

3(1 + 2e  cos v + e2) 

'ec  - 1 Y+ (&cos v)^ e > 1 (22) 

where F = -iE in the hyperbolic orhit corresponds to E  in the elliptic 
orbit.  Tnus, F is imaginary when an elliptic orhit exists, and E  is 
imaginary in the case of the hyperbolic orbit.  The result for e > 1  is 
identical to the result for g < 1, but with E replaced by iF and 

-y/l - e2 replaced by i-/e2 - 1. 

The value for tp when e = 1 is not directly evident as the 

quantity (l - e ) - 0 when e -* 1.  Equation (19c) for L 
written as 

may be 

H(l - {t cos V   _   .      I U  / 
—^— - 3e sm v ^-^ (t - tp)| ] 

+ tsin v 2 + 
e  1 + 

e cos v 
e cos v 3(1 

#(t - v] 
+ e cos v) J^ (t - tp)lcl :23) 

Eliminating J^ (t - tp) from equation (23) with table I equation (1-95) 

yields 

p nd - e2; 
cos v 

1 + e cos 
3e2sin2v 

;i - e2)(l + e cos v. 

i 
H 
o 
ro 

y.V 

5e sin v / 

i - e2 y   1 
dv 

+ e cos v 

+ 5e sln v  5(1 + e cos v) 
.2  " 

R + sin v /2 + e cos v\ 
e  \1 + e cos v/ 

1 1 
/" 

dv 
e cos v 

(24) 

: 
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Using the relation 

JO 

cos v dv 

(1 + e  cos v)3      2(1  - e2; 
sin v 

(l + e  cos v)2 

CM o 
N 
H 

I 
w 

dv + (l + 2e2)sin v 3e 

(l  -  e2)(l + e  cos v)       1  - e2   / 
'o Jo 

(25) 

to eliminate 
dv 
e cos v from equation  (24)  yields 

# 

tD= *~< 2  sin v 

a   .o / (1H- 

os v dv cos v 

e  cos v)5       e(l + e  cos v)' 
R 

+ |— (l + e cos v os v dv 

e cos v) 
CV       (26) 

Equation  (26)   is new defined at    e « 1,   since 

Jo 

cos v dv      _  sin v    1+5  cos v + cos2v 
(1 + cos v)3 5 (-[_ + cos v)3 

Hence,   the  equation for    t       on a parabola is 
y 

tp " 5n( 1 + cos v)2  IL 
2(l + 3  cos v + cos v )sin v i 

[2 +   |2  -  cos v  - 4 cos v  -  2  cos3v ]R} (27) 
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Derivatives of Alternate Orbital Parameters 

The element "p" may be used in place of the element "a" as a variable 
of integration.  Similarly, the pericenter radius rp may replace a or 

p. As p, a,   and rp  are similar elements, the question of which tl) 

select is determined by numerical and convenience considerations. 

^Semllatus rectum. - Taking the derivative of p = a(l - e2) yields 

p = a(l - e^) - 2eae.  Introducing expressions for a and e from equa-       W 
tions (19a) and (19b) yields ,L 

^   f ab VM-a 

ro o ro 
p =   2r   -^ C (28) 

or,   in terms  of    T    and    N, 

P = ^[T +| e(sln v)NJ (29) 

Perlcenter radius. - The equation for radius of pericenter is 
^-n = p/(l + e), and Its derivative is 
P 

fP = rrr (p - V) (30) 

Introducing expressions for p and e  from equations (29) and (Zöb)   into 
equation (30) and simplifying yield 

^P = H2^ " 1 ^e V T + (r Sin  V)N] (31) 
Mean anomaly. - Also, it may be desirable co use the mean anomaly M 

In place of the element tp.  Here, the distinction is significant in 

that M is not an element and varies even on a two-body orbit.  From the 

familiar expressions M = n(t - tp) and n = V^/a3 In table I, the 

derivatives become 

« = n(t - tp) + n - ntp (32) 

and 
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CM 
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CM 
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w 

5» 
where equation   (20a)  was  used for    &    in equation  (33).  Wow^ 

-nt     =  -  <Mt P fa3    P 

V5 rhsr (sin v)(e + ä) / N V 1 3(t  -   t   )  -f=T   - i T + r_^oLjrN 

;34) 

when t  is taken from equation (20d). 

Introducing equations (33) and (34) into equation (32) yields 

f(alnv)gUi) 1    -    ^,r      " I ■VI   - e"   lo /   .       \/re   ,   l\m      r  cos v = n *—: V      V    Ape/     ae ;35) 

It should he noted that M and fi are both zero when e = 1 and that 
M reduces to its two-body value when the in-plane components of the 
disturbing acceleration are zero. 

True anomaly. - The orbital parameter v^ true anomaly, may be used 
as an alternate to either the element tp or the parameter M.  From 

table I equations (1-47), (1-18), and (1-24), Kepler's equation may be 
written as 

„   ,  -1 -i/l " e  s:l-n v    -yl - e2 Bin v /_„, M = tan -* z  e \   T         I36/ e + cos v       1 + e cos v 

Taking derivatives in the disturbed orbit yields 

M = —V1 - e _ [vd _ e2) - e fsin v)(2 + e cos v)l     (37) 
(1 + e cos v)^ L v    ' J 

Solving equation (37) for v and introducing equations (35) and (20b) 
to eliminate M and e, respectively, yield the result 

= ^M _ (2 fn V)T - 2e + e2 cos v + cos v K       (38) 
2   \ Ve  /      Ve(l + e cos v) v 

r 

As in the case of M (eq. (35)), it will be noted that equation (38) re- 
duces to the two-body derivative expression when the in-plane components 
of the "perturbative  acceleration are  zero. 
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Table IV is a qualitative summary showing how the components of the 
disturbing acceleration affect the derivatives of the various orbital 
elements and parameters. 

Orbital Element Relations for a Circular Orbit 

In a circular orbit the location of the pericenter is undefined. 
Consequently, the elements CD and t. and the true and mean anomalies 

and M, which are related to the location of the pericenter, are un- 
defined.  Thus, relations involving CD, JP' 

and M take on an in- 

determinate form.  However, any perturbation having a component in the 
plane of the orbit will immediately est.ablish the limiting values of 03, 
t , v, and M in the circular orbit.  The circular orbit expressions are 

derived for the T, H  system of resolution of the in-plane disturbing 
acceleration components.  The derivatives are also given in terms of the 
C, R  system in table II. 

True anomaly. - Tailing the table I equation (1-117) for cos v. 

cos V 
0 
0^ 

i 
H 
CO 
o 
DO 

and applying L'Hospital's rule give 

(rp - pf)/r^ 
cos v e = 0 ;39) 

Substituting for p from equation (29), for e  from equation (20b), 
and for f from table I equation (1-80) [eq. (1-80) is also valid for 
disturbed orbits] into equation (39) yields in the limit as e approaches 
zero 

cos v 
2T 

2T cos v - N sin V 
e = 0 (40) 

Equation (40) is valid if e = 0 and e ^ 0.  The latter condition re- 
quires that an in-plane component of the perturbing acceleration exists. 
Solving for  sin v and cos v from equation (40) yields 

sm v 
N 

-/4T2 + N2 
0 (41a) 

cos V 
2T 

-/4:T2 + N2' 
e = 0 (41b) 
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where the upper sign gives the limiting value of the true anomaly for 
leaving a circular orbit and the lower sign gives the limiting value 
when entering a circular orbit.  It can be seen from equations (4l) that, 
if a perturbing force is arranged to force an Initially elliptical orbit 
through circular, the value of true anomaly will make a step change of 
n radians. 

Argument of pericenter. - The argument of pericenter is determined 
from table I equation (1-176): 

CÜ = u - v 

Time of pericenter passage. - In a circular orbit the time from 
"pericenter," t - tp, equals the arc length to "pericenter" divided by 

the velocity; that is, 

t S = V v' e = 0 (42) 

Derivatives of Orbital Parameters in a Circular Orbit 

Semllatus rectum and semlmajor axis. - Equations (29) and (20a) for 
p and a reduce directly to the same expression when e = 0: 

p = a = 2 - T, e = 0 (43) 

Eccentricity and radius of pericenter. - Using the limiting values 
for sin v and cos v from equations (41) in equations (20b) and (3l) 
for e and f  yields the following: 

e " ± k  V^T2 + N2, (44) 

P   I (2T + ^/4T2 + N2) , e = 0 (45) 

where again the upper signs give the limiting values of e and f  when 

leaving a circular orbit and the lower signs are for entering a circular 
orb it. 

Argument of pericenter. - Equation (20c) may be rewritten to give 

■) + - (2 + e cos v)H - (—zzz  sin u cot I1W 
/    P VV^p / !(= 

= ^|-(2T sin v + - E 

(46) 
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Substituting the following relations from table I 

SinV=V?f (47) 
COS   V il -1) («) 

gives the following result in the first term of equation (46): fej 
i 
H 

i(2T sin v + | N cos v) = i[2T ^ f + I. (l - |)j ° 

Applying L'Hospital's rule and using equations (20b), (29), (43), (47), 
(48) and equations from table I and noting that r = -W in the disturbed 
orbit when e = 0, it is found that 

I 2T */£ r + im - -] 
Limit   y tT r    V " P/ = vf _ jj/ST2 + H2\ + .JTE  -  HT \ 
e -^ 0        e2 2r    \4T2 + N2/    \4T2 + N2/ 

Thus, Cü reduces to the following for a circular orbit: 

v |_^r    4T^ + N^    ^d  + wd 

Time of pericenter passage. - Equation (21) may be rewritten to 
give 

t    - 2 */£j :L
          

;in      J. 
r TVT             I   L eT sin v fl ,     , s  r" 

S - V  Vu i eh 72~ + p N cos + —p  " «(e + cos v)   - 

5E(l + 2e cos v + e2 

TV (50) 
V(l  - e2)5 J 

Again, the limit of the first term of t  is 

2T sin v , r ■n— + — N cos v I    o    . o    o. 
Limit \ 1 - ec y  = Y—'_  JT/ST + IT \   /TW - 1W 
e - 0 2r   U2 + N2 i   14T2 + N2 
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and    t       for a circular orbit reduces to 

t     - i + r/TlJ - NT \        r /ST2 + N2 

P       2      VV4T2 + W2/      V2\4T2 + W2 
K + 3vT L e = 0 (51) 

o 
0J 

Mean anomaly.   - Equation  (35)   may be written as 

2(sin v)T + - (1  -  e2)N cos v i = n _ .-A^e2 M V + 2 (—  sin vjT 

J(52) 

The limit of the indeterminate term in equation (52) is 

M 
o 

i 

S o 

Limit 2T sinv +- (1 - e^)N cos T '.sf^ti!, 2TU 
2r   y^Z  + N2y  Y4T2 + Ja 

TN - NT 
+ V 

4T2 + N2 

and M for a circular orbit becomes 

V   ^ N/6T2 + w2. 2TW TW - NT 
2r      V^rpS + N2y       vV^T2 + N2       4T2

 
+ N2 

(53) 

where the upper sign is for leaving a circular orbit and the lower sign 
is for entering a circular orbit. 

True anomaly. - Equation (38) may be written as 

-*[H 21 sin v + — N cos v P      I 
- .-f- (2 + e cos v)M + =£&■ Vp r2 

which yields in the limit as e approaches zero 

V    /'2T2 + N2\  TW - NT 
V\4T2 + N2 4T^ + N^ 

e = 0 (54) 
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Ajppllcatlon of derivatives for circular orbits. - If the disturbing 
force is applied in a constant direction relative to the velocity direc- 
tion, it may be noted that 

TN - NT = 0 

even if the magnitude of the disturbing acceleration is varying.  Thus, 
if the direction of the disturbing acceleration is fixed relative to the        t-J 
velocity, all terms involving N and T will vanish in equations (49) H 
to (54). Similarly if the direction of the disturbing acceleration is o 
fixed relative to the radial direction, all terms involving C and R 
will vanish from the equations in table II. 

The equations for circular orbits given in the preceding sections 
and in table II are completely valid only for circular orbits.  However, 
certain of the equations will be found to be sufficiently accurate for 
near-circular orbits and. can be used as the basis of approximate equa- 
tions . 

COKCLUDING REMARKS 

All the results derived herein for the perturbation derivatives of 
the various orbital elements and parameters are listed in table II. 
Table III contains expressions for the orthogonal system of components 
C, R, and W in terms of the Cartesian components of the disturbing 
acceleration A^., A, , A7  in the OX, OY, OZ system.  It also contains 

equations interrelating the C, R and T, K systems of the in-plane 
components of the disturbing acceleration.  Table I is a collection of 
various forms of the two-body equations that also apply to the osculating 
orbit. 

As illustrated for p, rrj,  M,   and v, perturbation derivatives of 

other alternate elements and parameters may be derived from the expres- 
sions in tables I, II, and III.  Other integration variables that nay 
be useful for the solution of problems in orbital mechanics are suggested 
in references 2, 3, and 4. 

Selection of the best set of orbital elements or parameters for a 
particular type of special perturbation problem in orbital mechanics de- 
pends on the nature of the problem.  However, it is expected that examina- 
tion of the derivatives given herein will help to Indicate which param- 
eters should be used for a specific problem. 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, August 30, 1961 



21 

0 APPENDIX A 

o 
H 

I 

SYMBOLS 

The following symbols are used in this report: 

&x>&y>Az component of disturhing acceleration 

semimajor axis of conic section^ negative in hyperlDolic case 

semiminor axis of conic section 

perturbative acceleration in circumferential direction 

constant of integration 

a 

E 

Eg 

e 

disturbing acceleration function for element s, 

eccentric anomaly- 

energy per unit mass 

eccentricitv 

G 

E 

h 

I 

1 

used in hyperbolic orbits to correspond to eccentric anomaly 
in elliptic orbits, P = -IE 

component term of disturbing acceleration includes forces 
due to all except gravitating bodies not located at prob- 
lem origin 

5/2 ( E e sin El 

~ p1/2a1/2(3E + e sin E) 

angular momentum per unit mass equals twice the rate of 
description of area in orbital plane 

orbital plane inclination 

unit imaginary numb er, V-1 

OS      OS 
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,,2 

Mi 

M 

m 

K 

n 

P 

P 

Q,S 

R 

Rg 

r 

r. 

T 

t 

u 

gravitational constant 

mean anomaly- 

gravitating body mass 

gravitating "body mass at problem origin 

object mass 

perturbatlve acceleration in orbital plane in direction 
normal to velocity, positive when directed, toward interior 
of orbit 

mean angular orbital motion of object, 2jt/P 

orbital period 

semllatus rectum, a(l - e2) 

denote functions defined for convenience 

any pair of orbital elements 

perturbatlve acceleration in radial direction, positive 
outward 

range on surface of sphere intersected by an elliptical 
orbit 

radius from origin to object 

radius from origin to disturbing body 

perlcenter radius, the minimum distance from central body 
to orbit 

radius of sphere 

perturbatlve acceleration in direction of velocity 

time 

time of perlcenter 

complex variables, x + iy, x-, + ly-, 

argument of latitude, angle measured from ascending node to 
object radius in the direction of motion, u = v + ao 

td 

ro 
O ro 
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N 
O 
OJ 

I 

Vn 

V 

W 

X,Y 

x,y,z 

a2^ß2^2 

A 

e 

CD 

object velocity or complex variable^ x - ly 

complex variable j x-, - iy, 

true anomaly, angle measured from perlcenter to object radius 
in the direction of motion 

perturbatlve acceleration normal to orbital plane, positive 
in the direction of axis OZ 

denote object coordinates in the OX^,  0Y3  axis system 

-./here 0X3  coincides with pericenter radius and OY3 lies 

in orbital plane (see fig. 2) 

denote object coordinates in the OX, 01, OZ Cartesian 
system (see fig. l) 

direction cosines of the 0X3 axis referred to the OX, OY, 

and OZ axes, respectively 

direction cosines of the OY3 axes referred to the OX, OY, 

and OZ axes, respectively 

distance from object to any perturbing gravitating body 

natural logarithm base 

gravitational constant equals acceleration of object at unit 

distance from M  due to M . u. = k2(M + m) o o        o 

used in hyperbolic orbits to correspond to n in elliptic 
orbits, v = -in 

path angle, angle between circumferential and velocity di- 
rections, positive clockwise 

argument of perlcenter, angle measured from ascending node 
to pericenter radius in direction of motion 

longitude of ascending node 

Subscripts: 

a apocenter conditions in table Ij elsewhere, disturbing func- 
tion of semimajor axis 

disturbing function of e 



24 

I disturbing function of I 

i=l,2,-,',n  disturbing gravitating "body number 

j=1^2,---,6  Indicates  j*-'1 equation of a set 

indicates k*11 orbital element 

pericenter conditions 

conditions of spherical surface 

disturbing function of t 
P 

indicates extension of equations in x to a system in- 
cluding y and z 

components taken about or along an axis 

disturbing function of Cü 

coordinate system and coordinates in them 

disturbing function of Ü 

indicates derivative with respect to time 

h=l,2, •.,6 

P 

s 

s 
x-^y,z 

x,y,z 

CO 

1,2,3 

Ü 

Superscript 
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APPENDIX B 

o 
CVl 

I 

WHITTAKER'S DERIVATION OP THE GENERAL FORMULA 

FOR A LAGRANGIAN BRACKET 

The following development Is applicable to the equations of any 
osculating orbit. It is similar to that given in article 5-16 of Smart 
(ref. 1). 

Let  s and q_    be any two of the six orbital elements and x,  y,   z 
be the object's coordinates; then equation (12) may be written as a sum 
of Jacobians, 

(sTql  IsTqT  TsTqT (Bl) 

where; by definition, 

(x,x) _ 5x öx  öx ox 
(s,q)   Ss" (5q " 5q Ss" 

and so forth, for the other Jacobians.  The objective is to transform 
equation (Bl) into an expression of the same form but involving only ex- 
plicit functions of the orbital elements. Define 

and 

Then, 

• äx , • ö 
X§i+y 

Q = 
• Ox 
X^ 

+ z 

• öy 

r   i  öS  ÖQ Ls,qJ = ^- - ^ 
oq  os 

5¥ 

• ÖZ 

(B2) 

B5 

Let the OX, OY, OZ axis system in figure 1 be fixed to some reference 
astronomical line and plane such as the mean equinox and equator of 
1950.0.  The orbit plane is projected on the celestial sphere. The 
equatorial longitude of the ascending equatorial node referred to the 
vernal equinox is then denoted by SI,  and the inclination of the orbital 
plane to the equator is I. Rotate OX and OY about OZ through the 
angle Ü     to obtain the axis system OX 1' OY 1^ OZ 1' Coordinates of the 
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object in the OX, OY, OZ  system (x,y,z,) are given in terms of those in 
the  0X1, 0Y1, 0Z1  system (x1,y1,z1) by 

x = x-i cos ß - y-, sin 

y = X-L sin Q.  + jj^  cos Q 

Z = Zn 

(B4) 

It is convenient to introduce complex variables by the following defini- 
tions: 

U = x + iy,    V = x - iy 

and 

Ul = xl + ^1' 
vi = XT - iy. 

] 
J 

(B5) 

where i = V^l-  Then, by using equations (B4) with the definitions in 
equations (B5), it may be shown that 

U = U-j^cos ß + i sin S) 

V = V1(cos ü   - ±  sin a) 

(B6a) 

(B6b) 

i 
H 
O 
CV) 

or 

U = Uxe 

V = V e 

iß 

-iß 

(B7a) 

(B7b) 

The time derivative of equation (B?a) and the partial derivative of equa- 
tion (B7b) with respect to  s are, respectively. 

U = % iQ and 
as     1 §s iV 1 §1 

Multiply equations (B8) together to obtain 

OS    1 OS luivi 51 

(B8) 

(B9) 
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Taking the real parts of equation (B9) yields 

. ox J . öy  . öxi  .    ÜJI       .     . 
wi' 

aa 
[BIO) 

o 
CV1 
H 

I 

But it is seen from equations (1-33) and (1-44) of the two-hody orbital 
relations in table I that x1y1 - x1y1 = h cos I,  which is the projection 

on the 0X1  -  OYj^    plane of twice the rate of description of area in the 
orbit plane.  Hence^ from equations (B2) and (BIO) 

b - xi sr + yi sr + zi ^r + h cos i ^ (Bll) 

Ad 

as  z = z1 from equation (B4) .  Now, rotate the OT^ - OZj^ plane about 

0X1  through the angle I to obtain the axis system 0XZ,  OYg, 0Z2 hav- 

ing object coordinates (x2jy2,z2), so that the 0X2 - 0Y2 plane coincides 

with the orbit plane.  Then, by analogy with equation (BIO), 

öyq .  öy2 <$Z' 

i ^T zi §F" " y2 §1 + z. ÖI 
si- + (z2y2 - w 51 (312) 

But, since x1  = x2 and z2 = 0, equations (Bll) and (B12) nay be used 
to yield 

I:. 
Xo ^ 

.  öy2 
ös y? +  h cos I Si (B13) 

Now rotate the 0X2 - 0Y2 plane in the orbital plane through the angle 

cu to obtain the axis system 0XS, OY3 having object coordinates (X,Y) 

so that OX3 lies on the pericenter.  Again, by analogy with equation 

(BIO) it follows that 

2 ös   y2 ös 

ax2 
X öX + Y ^ + (XY - YX) ^ 

OS      OS OS 
B14 

But  XY - YX = h; thus, use of equations (B13) and (B14) yields 

„  „ OX   • ÖY , , da) öß 
t> = X^ HYv— +h'C h   h  cos I ^r— 

OS      OS      OS OS 
(BIS) 
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Let J = X ^ + Y ^-t then substitutions from table I equations 
OS      OS 

(1-144), (1-151)j (1-158), and. (I-1G5) may he introduced to obtain 

■äa  .   .  he 
J =  a

2 ^ (i  _  e2  cos2E)+ a(Sin E) (l cos E)(e 4f + a g) j,     os V OS    as/ ^B16^ 

where E is the eccentric anomaly. 

The time derivative of Kepler's equation (eqs. (1-47) and (1-52)) 
is 

E(l - e cos E 3) = n = ^I/Sa-O/S) (B17) 

where n is the mean angular motion in the orbit.  Eliminate E  in 
equation (B16) using equation (Bl?) to obtain 

i 
H 
O 
M 

= ul/2 J  =   u al/2(i + e  cos E)  g 4- &-^Me  sin E |f + B.^  sin E |f| 

which can be written as 

-1/2[-| i1/2(l  -  e  cos E)  T1 - f s -(l/2)(E  _  e  sln E) 51 

+ § a1/2(3 + e   cos E)   ö| + i a-(1/2)(3E + c   sin E)   g 

+ a1/2   sin E ^J 

J =   - 
x1/2    Ö 
£cl 

^ra3/2(E  -  e  sin E)]   + ^ |i[al/2(3E + e  sin *] 

J    =     -     ^S     -s—-    +    "N— 
2a    as       as 

(B18) 

where    H = | i_i1/2a1/2(3E + e  sin E)   and 

G = 3: 3/2( sin E) = na3/2(t - tp) = u
1/2(t 

00 .  1/2 ^jl^j 

^ 
Thus, 

5i 0^ 
(B19) 
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Introduce equations (B18) and (BID) into equation (B15) to obtaii 

o = - s—* 1- v- + h ^r— + h cos I v- 2a  ds    ds    os os 

A similar derivation will show that Q  is given by 

[B20a) 

00 o 
(XI 
H 

Txq 

'(-%) , an OOÜ öß 7: 5—*■ !• r— + h v^ + h cos I ^ 2a  dq    dq    dq dq (B20b) 

Using equations (B20), equation (B3) for Lagrange's brackets may now be 
written as 

[s^ = s'-S>|(-Ö-s(-S)|( s       ckü öh      öh ckb 
Ss" I" 2aj^"  '  'V       Ss" Si  " 57 5q 

• 

, öß c)(h cos l) 5(h cos l) bü            ,-r.     \ 
os    c5q äs    oq 

Using Jacobian notation, the general expression for a Lagrangian bracket 
as obtained by rewriting equation (B2l) is 

[s q] = ("^"2aJ , (a),h) + jü,h  cos l) 
(s,q)    TsTqJ     (s,q) 

(B22; 

Substitution of h = -v/[j.a(l - e2) into equation (B22) gives the expres- 
sion from which the Lagrangian brackets will be evaluated for the chosen 
elements 

;,q] = LVJaj , j^Ju 
TsTqJ-        (s,q) 

^) 1 +  W.>Vua(l - e2)cos I 
(s,q) 

(B23) 



APPENDIX C 

DISTURBING FUNCTIONS OF THE ELEMENTS IN TERMS OF 

COMPONENTS OF THE DISTURBING ACCELERATION 

By the application of spherical trigonometry it is seen that the 
components Ax, A ^ Az  of the disturbing acceleration referred to OX, 

OY, and OZ in figure 1 are given in terms of W, C, and R "by 

Ax = R(ai cos v + a2 sin v) + cCctg cos v - a-i sin v) + W sin Q sin I 

(Cla) 

^r =  R(ß1 cos v + ß2 sin v) + CCßo cos v - ß1 sin v) - W cos Q  sin I 

(Clb) 

Az = R^rl cos v + rz   sin v) + C^r2 cos v " Tl sin v) + w cos I 

(Clc) 

where 

-\ 

C2 

aj_ = cos to cos fl - sin en sin Ü  cos I 

ag = -sin co cos Ü  -  cos co sin Q cos I 

ß-^ = cos OJ sin 0, +  sin 03 cos ß cos I 

ßg = -sin 0) sin Ü  + cos 03 cos ß cos I 

rj_ = sin co sin I 

Tg = cos to sin I 

Geometrically, a-^, ß-^, T,  are the direction cosines of the pericenter 

radius, and ctg, ßg, Tg  are "the direction cosines of the circumferential 

direction at pericenter referred to OX, OY, OZ, respectively. 

To obtain üx/c3s, x -* y, z where  s  is any of the orbital elements, 
the coordinates of the object must be expressed in terms of the orbital 
elements.  The (x,y,z) coordinates in the system OX, OY, OZ may be ex- 
pressed in terms of the orbital elements and true anomaly v as 

i 
H 
o 
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o 
H 

I 

a(l - e^) x  = i—T  (an cos v + an sin vl i + e cos v  -L        e     ^ 

a(l - 
(ßi cos v + ßo sin v) 

z = 

1 + e cos v  1 

a(l - e2)  , 
1 + e cos v (rl cos v + r2 sln v) 

(C3a) 

(C3b) 

(C3c) 

when equations (1-140), (1-147), (1-154), (1-72), and (1-104) from table 
I are used. 

Determination of Da_, De, Di 
P 

From equations (C2) it is seen that the derivatives of <x,  ß,   and 
T with respect to the elements a,   e, and tp are zero. Equations 

(C3) are not explicit in terms of the chosen set of orhital elements, 
for  sin v and cos v are seen to be functions of a, e, and t  by 

the following form of Kepler's equation obtained from equations (1-18), 
(1-24), (1-45), (1-47), and (1-52) of table I: 

(t  - tp)^1 ■/2a-3/2 =  tan-1^1 I  e2  sln A _ e  V1  "  e2 

I     e + cos v        I 1 + e C' 
- e^ sin v 

+ e cos v 
(C4) 

Because of the transcendental form of equation (C4), explicit expressions 
for  sin v  and cos v in terms of a, e, and t  cannot be obtained. 

P 
However, the required partial derivatives may be obtained according to 
the following relations if v is regarded as an auxiliary variable: 

öx  föxl . öx öv 
57 = LSIJ 57 ^ x -* y,z {05] 

for s equal to a, e, tp where [öx/äs] in brackets indicates that the 
derivative is now taken only so far as s  appears explicitly in equa- 
tions (C3).  The derivatives from equations (C3) are 

öx 
5V 

ad - e'n      r  _ c 

+ e cos v)  L 
a^ sin v tgCe + cos v 

(l + e cos v)' 

fox]    1 - e2   , 
L5lJ = 1 + e cos v (al GOS v + a2 sin v)> 

)J > x,a -* y,ß; z,r 

(C6) 

x,a - y,ßj z,r  (C7) 
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rax] _       a[2e +  (cos v)(l + e2)] 
[Si'J       " fl + e  cos v)2 a-i   cos v + ao   sin v), 

H ■o' x -* J}Z 

(C8) 

(C9) 

and from equation  (C4)   the derivatives  are 

ov _       5     / y  

^ Va5(l   -  e2)3 

öv       sin v 

'l + e  cos v)   (t  - tT 

.'■:■ 1  -  eL 
(2 + e  cos v" 

(CIO) 

(en) 

i 
h- 
cv 
C 

st; 
^ 

(l  + e   cos v)' 
a3(l  - e2)0 

Combining equations  (C6)   to   (C12)   according to equation  (05)  yields 

öx 1   -  e2 , .        N 
v- = ^—i (cu   cos v + a0  sm v; da      1 + e  cos v      1 2 

(C12) 

+ i i '(1  -  eO 
tp)  a.   sin v - a^e + cos v ']' 

x,a -» y^ß;   z,r    (013a) 

dx =       a[2e +  (cos v)(l  + e2)] 
de "   " '      (1 + e  cos v)2 

.a-,   cos v + a0  sin v) 

-  a  sm v 2 + e  cos v 

'l + e cos v)2 L 
a^  sin v - a2(e + cos v)   , 

x>a -» y,ß;   z,T    (013b) 

^ ötp_ >a(l  -  e2' 
a-,   sin v  - o^e + cos v) \, X,CL -* j,ß;   z,r 

(C13c) 

».■«■:•' 
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The desired results for Da. D ,   and D+  are obtained by combining 

equations (Cl) with equations (C13a), (C13b)^ and (ClSc),   respectively, 
according to equation (13a).  Note that the following common factors in 
the process have the values shown: 

Coefficients of terms containing R: 

(a^ cos v+a2 sin v)" + (ß, cos v + ß2 sin v)
2 + (T-, cos v+To sin v): 

(a., cos v + ap sin v) c a-, sm v - cc. ;(e + cos v) 

+ (p-, cos -v + ßg sin v) ß-, sin v - ßn(e + cos v) 

+ (r  cos v + Tf sin v) T sin v - ro(e + cos v) -e sin v 

Coefficients of terms containing C: 

(ccg cos v - aj_ sin v)(a-[_ cos v + ag sin v) 

+ (ßg cos v - ß-^ sin v)(ß1 cos v + ßg sin v) 

+ (Tp cos v - T-, sin v) (T-, COS Y + r9  sin v) = 0 

(ap cos v - a-i sin v) a-]_ sin v - agCe + cos v)J 

+ (ßg cos v - ß-, sin v) 

+ (r2 cos v - T-L sin v) 

ß-, sin v - ß,-,(e + cos v) 

T^ sin v - r2(e + cos v = -(l + e cos v, 

Coefficients of terms containing W: 

(a-i cos v + a2 sin v)sin Q sin I - cos fi sin I 

^(e + cos v) sin Q  sin I - cos Ü  sin I 

(ß1 cos v + ß2 sin v) + (T-, COS V + T9 sin v)cos 1 = 0 

[al sin v - a '2 

[ß  sin v - ß (e + cos v)  + JT-i sin v - TgCe + cos v) cos 1 = 0 
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The simplified results then are obtained as 

B
*-[TT t —' =— It - t Je sxn v 

e cos v   ; >a;,(l - e2)      P 

-N a0(l - e2) 

]-——  (t - t )(1 + e cos v) C    (C14) 
P \ 

Dp ~ (-a cos v)R + a(si nv)(|~- 
e cos v 
e cos v. 

(C15) 

H 
I 
H 
1X1 
o 

D4 i (1 - ed) 
(e sin v)R + (l + e cos v)c] (C16) 

Determination of D^ D^^ D-j- 

The disturhing functions of ca, $.,   and I are obtained by combining 
the derivatives of equations (C3) with equations (Cl) according to equa- 
tion (13a) after equations (C2) are used to eliminate a, ß, and T in 
equations (Cl) and (C3). As this work is rather long but very direct, it 
is omitted. Results are: 

DCD= Cr 

D-r = Wr sin u 

DQ = Cr cos I - Wr cos u sin I 

(C17) 

(C18) 

(C19) 
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TABLE I. - EQUATIONS FOR THE TWO-BODY ORBIT 

(a) Classification of orMts8, 

Type  of 
orbit 

Energy, 
Eg 

Angular 
momentum, 

Eccentricity, 
e 

Semimajor 
axis. 

Semilatus 
rectum, 

h a P 

Circle Eg =  -|i/2r h = rV e=0 a =  r p = r 

Ellipse < 0 ^0 < 1 > 0 > 0 

Degenerate 
ellipse 

< 0 =  0 =  1 > 0 =  0 

Parabola =  0 i o =  1 —     CO >  0 

Degenerate 
parabola 

=  0 = 0 =  1 =    CO =  0 

Hyperbola > 0 ^o > 1 < 0 > 0 

Degenerate 
hyperbola 

> 0 = 0 =  1 < 0 =  0 

lines. 
The degenerate conies included for completeness are straight 

The two-body equations describing motion on a conic section may be 
written in myriad forms.  The following particularly useful equations 
have been selected for tabulation without derivation. 

It is assumed that e and r are never negative.  Special cases 
and restrictions necessary for real equations are indicated.  It is 
also obvious that many of the equations become indeterminate or un- 
bounded for certain conditions.  (Symbols are defined in appendix A.) 
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I-l: 

1-10: 

1-11: 

TABLE I. - Continued.  EQUATIONS FOR THE TWO-BODY ORBIT 

(b) Two-body equations 

Semimajor axis 

P 

r(l + e ccs v) 

1 - e2 

 r  
1 - e cos EJ 

 r  
1 - e cosh 7' 

w2 

e < 1 

n(l - e^) 

1 

(2/r) - (TZ/u) 

Semlralnor axis 

"b = nj&p 

Eccentricity 

e » «fl - ■« 

= J7Tü 

cos vVr       / 

'a T  J-p 

1-16:, 

1-17: 

1-18: sin E 

Eccentric anomaly 

E = iF 

F m  -IE 

Vl - e2 sin 
1 + e cos Y 

Eccentric anomaly (concluded) 

. £ sln Y ,    e < 1 

1-20:     sinh F 

Vi - e2 

r sin V 
a V^2 

- 1 

e -t cos V 

I-ZZ: 

1 + e cos v' e < 1 

— cos v + e,    e < 1 

1-23:     cosh F = — cos v + e,    e > 1 

1-24:    tan E = vrr 
e + cos v 

1-25:    tan 
2   >1 + 

1-26 i    tanh 
2   Te + 1 

Energy per unit mass 

V2  ^ Eg = 

1-28: 

1-30: 

2p (1 - e
2) 

2r' e = 0 

Angular motnentur. per unit maaSj or twice 

rate of description of area 

I-3l! hx = yj - zy 

1-321 hy = zx - xz 

1-33! hz = xy - yx 

1-34: h2 = h2 + h2 + h| 

1-35! = r4ü2 

1-361 = up 

1-37: --- iie.{l -  e2) 

1-38: - lir,    e = 0 

1-39: h = hz,    I - 0 n a 

1-40! = rpVp 

1-411 = rV cos y 

I 
H 
CO o 
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1-53: 

1-54: 

1-56: 

1-57: 

1-581 

1-59: 

1-60! 

1-611 

TABLE I.   -  Continued.     EQUATIONS FOR THE TWO-BODY ORBIT 

(t)  Continued.     Two-body equations 

Orbital inclination 

1-421 tan I = 

1-43: 

Vhg + h| 
0 < I < « 

BlnI=J§Z3 

cos I 

Mean anomaly 

1-45: M = n(t - tp), e < 1 

I-46I =  v{t -  tp), e > 1 

1-47: = E -  e sin E, e < 1 

1-48: = -F + e sinh F, e > 1 

1-49: M = n 

Mean angular motion 

M 

Zlt 

e < 1 

e < 1 

ii (1 - ez)   , e < 1 

'■iß (e2 - I)0, e > 1 

SemJ.Iatua rectijiii 

p = a(l -  e2) 

= r(l + e cos v) 

= r4^ 

(l. -t-  e2 + 2e cos  v) 

r(l  -  e2) 
1 - e cos EJ 

2(n/r)   -  V2 

^   (1   -   e2). 

r-64i 

1-65 i 

I-65I 

1-67: 

1-70! 

1-711 

1-72: 

1-73: 

1-741 

1-75: 

1-78: 

I-Bl: 

1-821 

1-83! 

I-84I 

1-85: 

1-861 

1-871 

1-88: 

Semilatus  rectum (concluded) 

rp + ra 

= r(l + cos v), e t= 1 

■ 2rp, e = 1 

^  r, e = 0 

Period 

'# 

~ 1 + e cos v 

•^x2 + y2 + z 

=    a(l -  e2) 
1 + e cos v 

e < 1 

8   =   1 

=» a(l -  e cos E), 

= a(l -  e   cosh F), e > 1 

= *$ + tan2 1)' 
I-76i = p, e = 0 

1-771 r = V sin f 

:tx + yj + 7.7. 

-■::< + yy 

le   COB  v 

Radius at perlcenter 

TT, « • 
1   , 

2a - ra 

a(l - e) 

S, e-1 

Radius  at  apocenter 

1   -   e 

=  2a -   Tp 

= a(l + e) 
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1-90: 

1-93: 

1-94: 

1-95: 

1-98: 

1-99: 

1-102: 

1-103: 

TABLE I.   -  Continued.     EQUATIONS FOR THE TWO-BOM ORBIT 

(b)  Continued.     Two-body equations 

Range  (of "ballistic missile)   on sphere 

of radius    rs    Intersected by an 

elliptical orbit 

Rg = 2rs(«   -  va), 0 < vB <n 

2rs^« 

Time of pericenter passage 

tp =  t   -  M e < 1 
a 

E -  e  sin E 
n ' 

F1 -  e  sinh F 

e < 1 

"Xi       \\ + e cos v) 

^Ufr. e cos v      1 + e cos v 

t  - Jsl __L_ /      E _       e  sin v    \ 
■  ^    1  -   e2  \-t/7 2       1  +  e   cos  v]' 

t  - Js^ —1  / T _       e  sin  v    \ 

' ^    1  -  e2 1 v/gZ  . "L      1 + e  cos vj' 

e < 1 

V 1 - e2 
-1 (VP^  ^n j) -       e  sl"   '.J 

V 1 + e 2j      1 + e  cos v ' 
t  -  V^ -i— 

T M   1 -  e2 

*  ' VlT H^    -,   1 log /^L-1 j   VS"^T tan v/g\      _£ 
1  "   e     [Ve2  -   1 \Ve  +   1  -   sfT^-l tan y/2 ]      1  + 

V£^ 1 fC2  +  cos  v)       ,       1 

^    H(l   +   COS   V)2   ^   "'J' 

•V^2r  -   hg(gu  -   rV2)   +   ^-(^  .   rv2',"j 

ri-Vzn - rV2 J ^  "  rV' 1 V^Cil -  rV2) 
f 

xgiiZjä+ Vr(rv2 - ui - yi U^r- h"(2u- rV2) 

h^Su-rV2) 
-r  >,      e > 1 

I 
H 
ro o 
ro 
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I 1-104: 

1-105: 

1-106: 

1-107: 

1-109: 

1-110: 

1-112: 

1-113: 

1-114: 

1-115: 

1-116: 

1-117: 

1-118: 

1-119: 

1-120: 

TABLE I.   - Continued.     EQUATIONS FOR THE TWO-BODY ORBIT 

("b)   Continued.     Two-body equations 

Argument  of latitude  (same as polar angle) 

u =  v + 03 

tan u = •£,   1-0 = 8 

z sin I + (y cos g - x sin ü)cos  I 
x cos & + y  sin ii 

True anomaly 

v = u - O) 

»1» p - r 

h*  - tiT 

h(xx + yy + zz) 

TU   e 

h2  - \1T 

Vi- e2   sin E 
1   -   6 cos  E 

fVi -  e2  sin E, 

-Ve2 - 1  sinh F 
1  - e cosh F ' e > 1 

^(M 
cos E - e e < 1 

1 - e cos E 

» 5 (cos B - e),    e < 1 
r 

cosh F - e 
1 - e cosh F 

e > 1 

1-121: 

1-122: 

1-124: 

1-125: 

1-1261 

1-127: 

1-128: 

1-129: 

True anomaly (concluded) 

in ? = Vr^i tan i' 
v   ITT 
2= V— e < 1 

± banh £., 
1     2 

tan v = Y/X 

r2 

= h/r2 

V cos jf 

Velocity 

x2 + y2 + z2 

1-130: = r2 + r2^2 

1-131: 
r2 

1-132: = ^ (1 + e2 + Ze  cos  v) 

1-133: (2       1  -   eA 

1-134: -l-l) 
1-135: -^            e = 0 

1-136i 1 - > +  e)2 

1-137: 
ra      2u 

" rp ra + rp 

1-138: Vf - | (1 -   e)2 

1-139: 
rP       2|i 
ra ra + rp 
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© TABLE I.   - Continued.     EQUATIOUS FOR THE TWO-BODY CEBIT 

("b)  Continued.     Two-body equations 

1-1401 

1-141: 

1-142: 

1-143: 

1-144: 

1-145: 

1-146: 

1-147: 

1-148: 

1-149: 

1-150; 

1-151: 

1-152: 

1-153: 

1-154: 

Rectangular coordinates 

x = r(cos  u cos Ü -  sin u sin Q cos I) 

= r cos u, I = 0 = n 

X = r cos v 

= x(coS a, cos a  -  sin to sin a  cos 1)  + y(oos a) sin fi + sin ffl cos £2 cos  I)   +  z  sin a sin I 

= a(cos E -  e), e < 1 

= a(cosh F - e), e > 1 

4 - tan2 i)' e = 1 

y = r(oos u sin Q + sin u cos Q cos I) 

= r sin Uj    1 = 0 = 0 

Y = r sin v 

- -X(sin m cos ä +  cos to sin a  cos I) - y(sin a) sin « - cos to cos £2 cos I) + y cos to sin I 

= aVlT e11 sin E,.    e < 1 

-aye2 - 1 sinh F,    e > 1 

= 2rp tan -,    e = 1 

z = r sin u sin I 

1-155i 

I ■156: 

I- 157: 

I- 158: 

I- 159: 

Velocity components 

* " " Vp^1" 0 C0S I^e cos " + cos u) + cos 0(e ain (0 + sin u)] 

= - YI (e sin to + sin u); 

Vlsln V 
i = o = n 

x = 

= -aE sin E,    e < 1 

m  aF sinh F,    e > 1 

1-160: 

1-161: 

1-162: 

y =  yt [cos Q  cos I(e  cos CD + cos u)   -  sin fl(e sin ffi +  sin u)] 

=   «/—  (e cos to +  cos u) i = o = n 

-lie- p  (e +  cos v) 

a-^ 1 -  e"5 E cos E,        e < 1 

1-165: 

-a-ye2  -IF cosh 7, e > 1 

*|ti sin 1(0 cos to +  cos u) 

H 
o 
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TABLE I.   -  Concluded.     EQUATIONS FOR THE TWO-BODY ORBIT 

(b)   Concluded.     Two-body equations 

41 

O 

W 

o 

Path angle 

1-166: tan i)f = — 
rv 

1-167: 
XX + yy + zz 

h 

1-168: 
e sin v 

1 + e cos v 

1-169: 
P 

sin v 

1-170: sin i|f = — 
V 

1-171: 
XX + yy + zz 

rV 

1-172: 
e sin V 

VTT ez + 2e cos v 

1-3 73: cos  ^  = 11 
V 

1-174: 
h 

" rV 

1-175: 
1 + e cos v 

VTT e2 + 2e cos v 
Argument of pericenter 

1-176: OJ = u - V 

Ascend! ng node 

1-177: tan a 
hx 

1-178: sin a = 
hx 

Vh| + hf 

1-179: cos H = -V 
■*/h2 + h2 
1   x        y 
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TABLE II.   -  DERIVATIVES OF ORBITAL ELEMEHTS MD PARAMETERS0 

(a)  Time derivatives  of orbital  elements due to 
perturbations 

Semilatus rectum 

" (2r# 

|— e  sin v)] 
\P / 

= 2 £|T + f- e  sin vlK 
V IP 

=  2 i T, e = 0 

= 2 - C, e = 0 

Eccentricity 

e =   J^  i(sin v)R + -[2  cos  v + e(l + cos2v) C > 

= i 2(e + cos v)T -  (- sin vJH 

i^4T2 + iß, e = 0 
V 

=  ± -yj^C2 + R2, e = 0 
V > 

Argument of pericenter 

tJLZk + £)c _ (22£_IJR _ g sln u cot r)w e ^ 0 

2 sin v T + — (Ze +  cos v + e2 cos v)l 
e       pe ' 

sin u cot I|W 

JL + ™ -  gg + 1 
2r  4rp2 + jf2  V 

V   CR - RC  1 

H 22—+ H - (sin u cot I)W 
4T2 + N2 

e = 0 

2r  4C2 + R2 V 
RC" 

4C2 + R2 
+ (sin u cot l)W e = 0 

^0 

'■TN - NT = 0 if T/W is constant, and CR - RC = 0 if c/R is constant. 
However, T/W and c/R are never both constant at once. 

1 
H 
O 
ro 
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TABLE IX.   -  Continued.     DERIVATIVES OF ORBITAL ELEMENTS AND PARAMETEES 

(a)  Continued.     Time derivatives  of orbital  elements  due to 
perturbations 

Time of perleenter 

tP = 
1  -   e 

JJHH-^-^-V—^ 

vi|{r^hsln-^e^)-3(t-v^#+(^^>} 

0 ^ e ^ 1 

0 / e ^ 1 

■f{ 
,   .        ,|2 + e2       r (sin v)l  - — cos '<      e a f^^r: yfx - e 

2e cos v + cos v -  3 + £ + 3e E sln v 

VT 
RL 0 < e < 1 

a     /p  )     -L 

V \|X 1 -  e^ 
/k + 3e + e^e f COB v)\sln v .  3 P. yZ 
Ve 1 +  e cos  v y n Vl  -  e2 

(— cos v) N 
Vae / 

0 < e < 1 

The  results for    t      for    e > 1    are Identical to the preceding results for 

0 < e < 1,  but with    E    replaced by    IF    and     V1  "  e2    replaced by    1-y/e2  -  1. 

^P   = 5|i(l + cos v) 
ir2(sin v)(cos2v +   3  cos  v + l)]c 

-   [2  cos^v + 4  cos2v +  cos v - 2jE[> e = 1 

V(l + cos  v)   \yL 
(4  eos~Y + 7 cos  v + 4)sin v 

5(1 + cos  v) 
T +  (cos V)HU e = 1 

1 _£_ 
2 " v2 

2 + v2 

6T2 + M2 

4T2 + K' 
H +  3vT 

7C2 + 2R2 

4C2 + R2 / 
R -   3vC 

r/TM -  MT 
V\4T2  + W2 

r/RC  - CR 
V\4C2 + R2 

e = 0 

e = 0 
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TABLE II. - Continued.  DERIVATIVES OE ORBITAL ELEMEHTS AND PARAMETERS 

(a) Concluded. Time-  derivatives of orbital elements due to 
perturbations 

Ascending node 

/ r  sin 

\VB^ 
sln w,   i/o 

Injlinatlon 

I = [  cos uj 

Semimajor axis 

..... 1- 

_       2a       /p 
(e sin v)] 

1   -   e^ 

- HA T 
I    M   / 

_ 2r e=0 

(f) T,   e = 0 

Radius  of perlcenter 

—E     J£ /-   fe sln2v + 2(1 -   cos v)] C l +  e^fn|pL -I 

l^r^-^^TMrslnv)^ 

-  [Bin v ,H} 

(EC +  V4c2 + R2 ), 

=   -   (2T  +   V^T2 + W2), 

e = 0 

e = 0 

H 
M 
O 
N 



45 

TABLE II. - Concluded.  DERIVATIVES OF ORBITAL ELEMENTS AND  PARAMETERS 

(b) Time derivatives of orbital parameters due to both 
orbital motion and perturbations 

CO 
o 
H 

i 

Mean anomaly 

V1 
l/P(l  -   e2) \(^-^ -  2 ^R  -   Sln V(l 

^' 
0 < e < 1 

*-± 1  -   e' 
V ■[^»v)(f 4)T + HF>'} 0 < e < 1 

The  results  for    M    for    e > 1     are  identical  to  the preceding results 

for    0 < e < 1,  but with    n    replaced by    iv    and    "yi -  e2    replaced 
by    i\/e2  - 1. 

V    .   N/6T^ + N^ 2Tn 
2r VLrjnZ    +   JJS 

vV 
-  TW -  ?TT 

4T2  + W2       4T2 + F2 
e=0 

_L _ R/j 7C2  + 2R2 

%C2 + R2 , 

2CR 

vy/ic2 + R2 

^CR -  RC   \ 

,4C2 + R2)' 

True  anomaly 

2M + ijEKcos   v-)R -   (sin v)(l + £V: e ^  0 

a rvlLE - -L (2  sin v)T + -  (2e +  e2  cos v +  cos v)S 
r2 VeL p   ^ 'I 

V        K/2T2 + I2\       TW - NT 
2r      VUT2  + N2/       4T2  + N2' 

X + R/      C \       CR  -  RC 
2r       V4C2

+R2j        4C2
+R2, 

e = 0 

e = 0 

e =  0 

e ^  0 
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TABLE III. - COMPO^SNTS OF THE DISTURBING ACCELERATION 

A (cos u cos ü  - sin u sin Ü  cos I) 

+ Av(cos u sin £2 + sin u cos Ü  cos l) + Az sin u sin I 

0 = Ax(- sin u cos Si  -  cos u sin Ü  cos I) 

+ A,r(- sin u sin Q. +  cos u cos Ü  cos I) + Az cos u sin I 

W = Ax sin Q,  sin I - Ay cos Q sin I + Az cos I 

T = (1 + e2 + 2e cos v)'^1^ [{l +  e cos v)C + (e sin V)R] 

H- i^C + rR 
= C,     e = 0 

C + —,    e = 0 

N = (1 + e2 + 2e cos v)-^1/2) [(e sin v)C - (l + e cos v)R] 

/up 
V \      r 

a -H,    e = 0 

N = — -RJ    e=0 

C = (1 + e2 + 2e cos v)"^1/2^! + e cos v)T + (e sin V)N] 

•      • 
C = 

(1 + e2 + 2e cos v)-^1/2)^ sin v)T - (l + e cos V)N] 

H rT - -JtM K 

R = ̂  - N,    e = 0 

I 
H 
DO 
o 
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TABLE IV. - QUALITATIVE EFFECTS OP THE DISTURBDJO ACCELERATION COMPONENTS8 

Perlfooua-^ x 
\ 

/ I:\J /■\ i« 
/ 

\ 
ii / 7 y 

/ 
/ 

Derivative o 
element or 
parameter 

Semimajor 
axis, a 

Semilatus 
rectum, p 

Radius of 
perlcenter, rrj 

Eccentricity, e 

Mean anomaly, M 

Tr-;e anomaly, v 

Arg'jment ol' 
pericenter, a, 

Always 

Always -j- 

1 and 4, + 

2 and 3, 

Ascending 
node, tt 

Inclination, 

1T and 2', 
3r and 4', 

1' and 2' 
3' and 4' 

and 2', 
and 4'. 

1* and 2', 
3' and 41, 

1' and 2r, 

3' and 4* 

!• and 

1" and 4", - 
2" and 3", + 

1" and 4", + 
2" and 3", + 

Always + 

Always + 

Always + 

COS V > A/I 

.<^ 

1' and a•, 
3' and 4' 

I1 and g' 
5' and 4' 

1' and 21 

3' and 4' 

1' and 2' 
3f and 4* 

i/i + 8eä ■ 
2e 

Vl  + be2  - 1 

and 41 

and 3' 

I1 and 4' 
2' and 3' 

I and II, - 
III and IV, 

I and II, + 
III and IV, 

I and IV, + 
II and III, 

opposite in every case for negative disturbing oomponents. uenvatxve.  Kesuits are 
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O 
CV1 

w 

In-plane component 
of disturbing 
acceleration- 

/CD-7319/ 

Pericenter 

Figure 2. - Diagram in orbital plane showing resolution 
of in-plane disturbing acceleration into radial (R) 

and circumferential (C), or tangential (l) and normal 
(N) systems. 

NASA-Langley,  1962        E-1202 



48 

j^ 
o 

■H 
4J Tj 
•H ai 

■w '1 UJ ■p 
n •H Ü o 

Tl P. d) 
n in •'■j 
o +J o 

■H u i-l -p 
-p -p <u f-i -H 
f 1 n ■' J ^3 

:■ <D r^ c   ^ 

cd   <u 
^ -P 

U 
O 
o 
o 

03 
SH to 
0) X 

-P o 
0) 
e 'ö 
a5   C 
H cd 
cö 

H ><: 
cd o 
-p 
•H     -. 
rQ        H 
fn XI 
O O 

m ipi 
d o 
o 

l 
H 

O 

> ■p 
ai • 

m o to 
ö o R 

•H H fl) 
i* -p 
O T) tn a S 
0J cd CD 

I f3 
cd ai 
^ -p 
hD CO 
cd   >> 
•H    CO 
O 

N 
I   O 

o 
tu 
u -> 
3 X 
bOO 
•H 



fe J3 

jO Z    -7 

^ n)   g „ 
c > S H 
g -S< 

.Q K g m 

Q K N Z 

• -i S r" 

I i 

I« Z a 

I" 

►J tl 
r-"   S -» t-t 

is 
£ 0) 

■5 5 

2 W 
ISJ    • 

c H M 
•  CM 

e 
A

dm
 

R
S
 O

F
 

V
A

T
IV

 
3       to 

T5    S 
Q 

•a  aQ 
05 HS 

2^ 
S-g    z 
i- . en <; 

-1
1
0
6

 
ro

u
au

 
A

N
D

 

p z ^ o 
< ■2   ■ Z S ^ 33 in - >^M z — z -J 

=   >.H H rt W ~ 
<: gSO o 3 < 
m ^ W 

Z Z W 
0 
z 

!      ^ ^      tH 

! "o ^ S :^ 05 
! t. >>. 

a a ft 
,   U) " T3 

! ^ o o 
'   rt C ^ 
1   r^ °   m 

3 S ä 

O  B 

Ml K 'C ■« ' 
5äS. 

i« 
O 

tfl S 
■_• 

r: >> 
en O 

0 

5 

O 

cd 
C 

T3 

N 

-1 

O 
O 

0 

3 c 
tfl OJ c rt a 

ß AH -: 0) 
Ü 

CJ 0 I—. :- - rt 

r ' fl 

I z 
] § o 

•^   cj   g   ^ 
--^ s g 

Q W N Z 

5 » 
3 S- 

►-I 

U; 

43 W 

a H 
g tu 

■S O 

a) K 

an 
cß W 

-      CJ 

>  ^  ^ ,-1 

2   r3 Z 
^  ö < 

z 
H ai W 

OT x: w 

Z  Z W 

W "3 
W * a J 
H    . OT < 

^ ^ ^ H 

O o S ^ 
Ü« |< 

> 3 w^ 

tu "3  ^3 
JO tä 

CJ   O   t, 

S^iS- 
5 c S S 
S a) T 2 
S3 P S 

d Ä Ki 'S     z      .5 ^ 

H-Tiu 

11 
c 
(V > 
o 

> B S £ 
! ÖS«- 

c   ö   M 
o e 

1 a 2 
•v U '£i 
I =" "i S 

»•PS 

er QJ 
M   'S 

C   ti 
o 
-■ a* OJ H o  ^ 

" s 21 
^ -*-1 c 5 

^ ^ OJ    Cfi u) S3 p ^j 

xi z -^ 

c > aj H 

Q X N Z 

3 »' Z u 

• ,_; K >     ^3 ^ 

- • 
< fe •~ 
J 

J 3 $H 

"^ :: u 

5Ö -; 
isw 
to pq N,n 

IS 
W 
> 

< -> 
3         CD 

CD   K 
5 0° 
55 u rt u H <c r 7 

a,'_, 

•aS 

-x. 
M 
Q an

d 
T

S
 p

i 
IE

 D
 

en < 
"    PH H

E
IR

 
H

u
ff

, 
p

. 
  
 O

 
L
 N

O
 

H . en < 
O   rt ^ c Z'^p 
rH     O   O 

I    u 

z < ■3   •g 

z!: z 

b
so

n
, 

V
e 

lu
a
ry
 1

96
 

4^
A
 T

E
C

 

S
A
 T

 
ti

o
n
a 

E
M

E
 

0 

Z Z Cd Z Q^S 

^  ^   t,   n 

^ °3 S 

3 ä 

-3  e  (H 

S3^ Q c 
«'S Sf 
rt   C   A   p 
- 2 « 

ni  —•    rt 

Ss K '2 
m  a> 

^   X    ^ 

^ ^ 

OJ 0) 

o 3 • 

IS" 
j3 -C  en  c i|f| 
c a ho rt 
o c S 2. 
^g .9 S ? 
MX!   S .3 

en u 

g nl 
3 S 

5   a- 0! 

^    CJ    0 S -a i 

^ s i) m 
H o a OJ 

< 3 
^^Ti 

W
i 

e
a
rl

 
rr

aa
i 

N
 D

 
c > <u t-1 

2 CJ 

o
b
so

 
u
ff

, 
im

m
 

A
S

A
 

Q 35 N Z ^ rn 

■ M K > 
h-t    H^   h-H   h—1 GiS 

nJ 2 

x: ^ 

a- 

o
rb

it
 

le
 s

e
 

ir
 d

if
 

cd 
0 
.Q 

«5J         QJ c ä -a 

?!   °S cd 
CJ SÜ 

(H    >>   , c   °   ^ 1^ ■? m^s 
^         O         O ^ ^i 
c .2 « s !§= 
«I g ^ 

c -C a 

Z  9. -S 
t4 

C  "Ü   üi   u 

bß cri   55 
■^ ° = S E- 

3    . 

H o a a) a 2? s-^ 



<°  s 

a > 

S Q 

s< 
3 -5 <; 

35 N z 

■MÖfe   a: 

X! CJ 

< 
2? 1 
ss 
ci a 

< 

-SO 

S 33 
a H 

tu 
O 

S 

> ca 

S fe > 

MW 

-a S 

CD     3   Q 0     ^   S 

of       ^ 

^f H 
I<5 , Z 
H CTj    M 

< ss 
en j-; w 

< ■Tt ^ 
z Z W 

31   .55 
3! S5 aJ 

Qz"ü z -   . z 

5:s 
'S h 0) 
o ox: 

.3 ■o 
s 3 c 

QJ ro o 

2 c.2 

" as 
cfl   0) ^ 

S ^ - 
•3 rf B 

Ka a 

M xi g 
>^ u ** 

■j OJ es 
2 w xa 

3 rt 

«fit1 

^ in S 

-a 2 2 

«!§. 

O   3   " 
M C   3 

O)        Iß 

&|s 
C   3   ° 

- - C 

OJ .2 -' 
'~i ^ '—1 

"3 S « 
Ö Ä S 

3 

■-^-. O 
O 

^ 

nj S 
— -, 
rr1 cu 

W 

ä s 

fo    t: ^0 

lz^ 
S £ z 

°  . s< 
c B -- < 
Q S N Z 

Z  u 

a > 

< 1 

3 W 

S H 

■a o 

a a 
S w 

CO w 

? Q s| 
o < 

.  3 m 

^Z 
a w 

0 0 x: 

z 
H 

m S ia 
z z w 

3 -o 0 
■« rt c 

^ J3     ' O 
§ "H Hj 
S 2 S 

D
E

R
IV

 
an

d 
A

r 
T

S 
pr

ic
 

T
E
 D

-1
 

Si      Z •^  -H    CO 

SW  i-l 

d
et

er
n

 
o

rb
it

a
 

m
et

ho
d 

N
D
 T

 
IN

. 49
 

^I
C

A
 

.2 0 a 

CO    . -   H 

T
h

e 
an

aJ
 

c
o
n
ic

-s
e

 
pe

rt
ur

üa
 

BQ^S 

^ 5 c 
^ S3 
£.* p 

^■Ä    g   "1 

-?! 

«is T, a1 

■ag's 

3 73 
a" <u 
W 2 

■S   2 S 

5 z  -v 

Q K N Z 

< 

z 

M CO 

H   ■ 

g US 

Bw 
.2 W 

Xi > 
CU 

XI 
Cß 

tH Ct> 
O -H 

^ 

3  H 1 W 1 
Sfe> T3 O C 

ä w S 
S H Ä 

•aS« 

m 

-i S o 0 a 
5 0)3 
tn    CJ  _. 

^■OB 
1       Z 
W 0..-I 

. CD <; 

■a 
OJ    « 

S S '55 £ - t > 

'S K c 3 2 ^ 

±: Q +3 to      t» -H 
■ -^ y •? 5 

<■ ^   M 
Z _ Z pq 
H as W ai 
< §So 
m 33 W r, 
<: cd j g 
z z w 6 

EH > 

■ z («E 
, o 

all 

o  c 

■, CJ id 

cß X3 2«5 

3 -c 

i Q 
~ ^ MS < a 

c > di  t- 52 n 
0 
en uJ 

0 3 
0 as N Z 2 m' 

,_, K q: !1H     C^.^ 

H   ■ < fa 

g|| 
Sw 
.5 H W 

T3 O C 

« K > 
CJ tu IT-, 

an 8 
C&WW 
-aSQ 

§i| 
2 <cr 

o   rt K Q 
^   d  0 Z 

z z; z s 
< gSo 
eo rj W r^ 
< rt J 5: 
Z Z W H 

5 
5 

.   CM 

>   ^ 
a      CD 

5 «rs 
•a a,0 

-3     Z 
W äJ 

. a^ < 
Z* 

1   CD   t, 1 6 a 
0)  ^ 

Xi      tH 
si   3 I« 
CU 

I is 

A S 
^ c 
en  cp 

cö irt ™ 
ob « 'C 

B 5 
O   05 T3 

CU    CU      , 

S 3 g 
o S 

0 ^ 1-1 o 

ra 3 ä BSV 

? c ö ä 

a 
o 

u ■ i 

> S w 

§ S< 

Q4S 

y U   o   ^   ^ '2 

Cfi    g 
cß Ö 
>i   CJ 

bß rf 
C-   C   3 , sis', 

FH    CU 
2   en ■ 

3     . 

eel 

o .- 

3  J3 

ffl ö s s s ^ 
a cu Ä 3  c. oj 

< 
2 


